Стройка, дизайн, ремонт

Нарушение 15 хромосомы. Остановка развития зародыша. Причины количественных хромосомных аберраций

Мужское и женское начало

В музее Прадо в Мадриде есть пара картин придворного художника XVII столетия Хуана Карреньо де Миранда (Juan Carreño de Miranda) с названиями «La Monstrua vestida» и «La Monstrua desnuda» («Одетый монстр» и «Раздетый монстр»). На картинах изображена очень толстая пятилетняя девочка Евгения Мартинес Валлехо (Eugenia Martinez Vallejo), не красавица, но всё же не монстр. Что-то в ее виде не так, как должно быть: необычная для ее возраста полнота, маленькие ручки и ножки, странной формы рот и глаза. Видимо, ее для забавы выставляли в цирке. Врач с первого взгляда на картины скажет, что перед нами типичный случай редкого генетического заболевания - синдрома Прадера–Вилли. Дети с этим синдромом рождаются рыхлыми с мертвенно-бледной кожей, сначала отказываются от груди, но потом начинают есть как не в себя. Им совершенно незнакомо чувство сытости, поэтому они страдают от ожирения. Известен случай, когда ребенок с синдромом Прадера–Вилли, сидя на заднем сиденье автомобиля, съел 0,5 кг сырого бекона, пока родители ехали из магазина с покупками. Для людей с этим синдромом характерны короткие руки и ноги, недоразвитые половые органы и слегка заторможенная психика. Часто они закатывают истерики, особенно если им не дают еды, но также для них характерно, как сказал один доктор, «исключительное проворство в собирании паззлов» (Holm V. et al. 1993. Prader–Willi syndrome: consensus diagnostic criteria. Pediatrics 91: 398–401 ).

Синдром Прадера–Вилли впервые описан в Швейцарии в 1956 году. Мы могли бы отнести этот синдром ко многим другим генетическим заболеваниям, о которых я обещал не рассказывать в этой книге, потому что ГЕНЫ НЕ ДЛЯ ТОГО, ЧТОБЫ ВЫЗЫВАТЬ БОЛЕЗНИ. Но с этим синдромом связана одна интересная особенность, раскрывающая некоторые принципы работы генома. В 1980-х годах врачи заметили, что, как и все остальные генетические заболевания, синдром Прадера–Вилли часто встречается в одних семьях на протяжении нескольких поколений, но временами проявляется как совершенно другое заболевание - синдром Ангельмана. Заболевание настолько другое, что его можно было бы назвать антиподом синдрома Прадера–Вилли.

Гарри Ангельман (Harry Angelman) работал доктором в Уоррингтоне, Ланкашир (Warrington, Lancashire), когда впервые установил взаимосвязь между редкими случаями появления так называемых «детей-марионеток» и наследуемым генетическим заболеванием. В отличие от синдрома Прадера–Вилли дети с синдромом Ангельмана рождаются с повышенным тонусом мышц, плохо спят, отличаются худобой, гиперактивностью, для них характерна маленькая голова и большой рот, из которого часто выглядывает слишком большой язык. Походкой они напоминают марионеток, поэтому их часто так и называют. Для них также характерно постоянно хорошее расположение духа, улыбка до ушей и приступы неуемного смеха. К сожалению, веселый нрав сопровождается значительной умственной отсталостью. Часто они даже не умеют разговаривать. Дети с синдромом Ангельмана рождаются реже, чем дети с синдромом Прадера–Вилли, но очень часто оба синдрома наблюдаются в одних и тех же семьях в разных поколениях (Angelman H. 1965. "Puppet" children. Developmental Medicine and Child Neurology 7: 681–688 ).

Как вскоре стало известно, оба синдрома вызывались проблемами в одной и той же части хромосомы 15. Отличие состояло лишь в том, что в случае синдрома Прадера–Вилли дефект наследовался от отца, тогда как в случае синдрома Ангельмана - от матери.

Этот факт противоречит всему, что мы узнали о генах, начиная еще с Грегора Менделя. Мы говорили, что в основе наследования лежит простая запись информации в виде генетического (цифрового по своей сути) кода. Теперь же мы узнаем, что гены несут в себе не только прописи белков, но и что-то вроде печати в паспорте с указанием места рождения - импринтинг. Нечто особенное есть в генах, полученных от матери и от отца, что позволяет отличить их, как будто в одном из случаев текст генетического кода пишется курсивом. В некоторых тканях работают не оба гена на разных хромосомах, а только материнский или только отцовский. Поэтому мутация в одном и том же гене может проявляться по-разному, в зависимости от того, пришла она от отца или от матери, что и имеет место в случае с синдромами Прадера–Вилли и Ангельмана. Как клетки отличают отцовские гены от материнских, пока до конца не ясно, но некоторые гипотезы уже начинают появляться. Другой интересный вопрос: в силу каких причин в ходе эволюции возник импринтинг материнских и отцовских генов, какие преимущества это дает организму и популяции в целом?

В начале 1980-х годов две группы ученых, работающие в Филадельфии и в Кембридже, одновременно сделали удивительное открытие. Они пытались получить мышь только от одного родителя. Поскольку в те времена клонировать мышь из соматических клеток тела было еще невозможно (ситуация быстро стала меняться после успешного опыта с овцой Долли), группа исследователей в Филадельфии просто слила вместе два проядрышка оплодотворенных яйцеклеток. Когда сперматозоид проникает в яйцеклетку, его ядро с хромосомами еще некоторое время соседствует с ядром яйцеклетки, не сливаясь с ним. Такие ядра внутри яйцеклетки называются проядрышками. Ловкие ученые с помощью пипеток извлекают одно из проядрышек и заменяют его другим. Можно слить проядрышки из двух яйцеклеток или из двух сперматозоидов, в результате чего получается яйцеклетка с полным набором хромосом, но только от отца или только от матери. В Кембридже с этой целью использовали другой подход, но результат получился тот же. И в обоих случаях эксперимент закончился неудачей. Эмбрионы не смогли нормально развиваться и вскоре погибли в матке.

В случае с материнскими хромосомами эмбрион сначала развивался нормально, но не образовывал плаценту, без которой быстро погибал. Напротив, когда в яйцеклетке объединили только отцовские хромосомы, получалась большая плацента и покровы эмбриона, но самого эмбриона внутри не было. Вместо эмбриона разрасталась дезорганизованная масса клеток, в которой нельзя было различить никаких частей тела ( Cell Nature 311: 374–376 ).

Результаты экспериментов позволили сделать неожиданный вывод: отцовские гены ответственны за развитие плаценты, а материнские гены - за дифференциацию клеток эмбриона в органы и части тела. Почему появилось такое распределение труда между отцовскими и материнскими генами? Пятью годами позже Дэвид Хэйг (David Haig) из Оксфорда утверждал, что знает ответ на этот вопрос.

Интересно, что в тех случаях, когда плацента не выделяет активные гормоны, отношения эмбриона с материнским организмом складываются более дружелюбно. Другими словами, хотя у матери и эмбриона единая цель, они часто не могут добиться согласия относительно способов ее достижения и того, какие ресурсы мать должна предоставить своему ребенку. Эти споры продолжаются и после рождения ребенка, во время отлучения от груди, а впрочем, и все остальные годы.

Геном эмбриона наполовину состоит из материнских генов, что может привести к конфликту интересов: должны ли материнские гены больше заботиться об эмбрионе или о самой матери. Отцовским генам эмбриона такой конфликт не грозит. Материнский организм их интересует только с точки зрения предоставления пищи и укрытия на время развития эмбриона. В терминах человеческого общества мужские гены просто не доверяют женским генам такой ответственный момент, как создание плаценты, и берут этот процесс под свой персональный контроль. Именно поэтому у эмбрионов, которые образовались в результате слияния двух проядрышек сперматозоидов, так хорошо получалась плацента.

Исходя из своих чисто теоретических гипотез, Хэйг сделал практические выводы, которые очень скоро подтвердились экспериментально. Так, он предположил, что у яйцекладущих животных не должно быть импринтинга материнских и отцовских генов, поскольку внутри яйца эмбриону бессмысленно спорить с организмом матери о размерах желтка, выделенного для его пропитания. Эмбрион оказывается вне организма матери еще до того, как получает возможность как-либо манипулировать ее организмом.

Даже у сумчатых животных, таких как кенгуру, у которых роль плаценты выполняет складка кожи на животе, по гипотезе Хэйга не должно быть импринтинга генов. Сейчас уже известно, что Хэйг был прав. Импринтинг характерен только для плацентарных млекопитающих и для покрытосеменных растений (Haig D., Westoby M. 1989. Parent-specific gene expression and the triploid endosperm. American Naturalist 134: 147–155 ).

Кроме того, вскоре Хэйг с триумфом отметил, что еще один случай импринтинга был зафиксирован для пары генов в геноме мыши именно там, где он предсказывал: в системе регуляции скорости роста эмбриона. Речь идет о гене, кодирующем небольшой белок IGF2, напоминающий инсулин. Этот белок постоянно обнаруживается в тканях эмбриона, но отсутствует у взрослых организмов. В эмбрионе есть другой белок, IGF2R, который прикрепляется к белку IGF2, хотя смысл этого взаимодействия пока не ясен. Возможно, его задача состоит в удалении белка IGF2 из организма. А теперь внимание. Оба гена, IGF2 и IGF2R , диверсифицированы по происхождению: первый считывается только с отцовской хромосомы, а второй - только с материнской. Видимо, здесь мы наблюдаем пример небольшого противостояния между родительскими генами: отцовский ген пытается ускорить развитие эмбриона, а материнский - притормаживает его (Haig D., Graham C. 1991. Genomic imprinting and the strange case of the insulinlike growth factor II receptor. Cell 64: 1045–1046 ).

По теории Хэйга половой импринтинг как раз должен проходить по таким конкурирующим парам генов. Подобная ситуация должна проявляться и в геноме человека. Человеческий ген IGF2 на хромосоме 11 также считывается только с отцовской хромосомы. Бывают случаи, когда на одной хромосоме оказывается две копии этого гена, что вызывает синдром Беквита–Видемана. В этом случае сердце и печень вырастают слишком большими. Кроме того, развитие эмбриона часто сопровождается появлением опухолей. Для гена IGF2R у человека импринтинг не обнаружен, но, похоже, эту роль взял на себя другой диверсифицированный ген, H19 .

Если два диверсифицированных гена только то и делают, что воюют друг с другом, наверное, их можно было бы отключить без вреда для организма? Как ни странно звучит эта гипотеза, но такое возможно. Разрушение обоих генов не мешает развитию нормального эмбриона мыши. Мы возвращаемся к теме, которую уже рассматривали на примере хромосомы 8, к вопросу об эгоистичных генах, работающих исключительно ради самих себя и совершенно не заботящихся о процветании организма и популяции. Многие ученые полагают, что в половом импринтинге генов нет никакого рационального зерна с точки зрения пользы для организма. Это лишь еще одно подтверждение теории эгоистичных генов и полового антагонизма.

Как только мы начинаем мыслить категориями эгоистичных генов, в голову приходят неожиданные идеи и гипотезы. Рассмотрим одну из них. Эмбрионы в одной утробе, управляемые отцовскими генами, могут вести себя по-разному в зависимости от того, какой набор генов им достался. Эти конкурентные различия будут особенно сильно проявляться в тех случаях, когда яйцеклетки были оплодотворены семенем разных отцов, что в природе встречается довольно часто. Конкуренция между эмбрионами может вести к отбору более эгоистичных отцовских генов. От подобных рассуждений очень просто перейти к практике и экспериментально проверить нашу догадку. Хорошим объектом исследований являются мыши. Разные виды мышей существенно отличаются своим поведением. Так, для самок вида Peromyscus maniculatus характерны беспорядочные половые связи, поэтому в каждом помете можно найти мышат от разных отцов. В другом виде, Peromyscus polionatus , самки моногамны и сохраняют верность своему единственному избраннику. Все мышата в помете происходят от одного отца.

Что произойдет, если мы скрестим между собой мышей этих двух видов, P. maniculatus и P. polionatus ? Внешний вид потомства будет зависеть от того, к каким видам относились самец и самка. Если взять самца P. maniculatus (с беспорядочными половыми связями), то у самки P. polionatus родятся мышата невероятно крупного размера. Если отцом будет моногамный P. polionatus , то у самки P. maniculatus мышата родятся очень мелкими. Вы уловили суть эксперимента? Отцовские гены вида P. maniculatus развивались в условиях жесткой конкурентной борьбы в утробе за материнские ресурсы с другими эмбрионами, некоторые из которых даже не были их родственниками. Материнские гены P. maniculatus , в свою очередь, развивались таким образом, чтобы позволить матери урезонить свои слишком активные эмбрионы.

Отцовские и материнские гены вида P. polionatus эволюционировали в гораздо менее агрессивных условиях, поэтому у самки данного вида не было средств, чтобы противостоять отцовским генам вида P. maniculatus , а отцовские гены P. polionatus были недостаточно активными, чтобы эмбрионы могли взять свое в утробе самки P. maniculatus . Это вело к тому, что в одном эксперименте мышата оказались слишком большими, а в другом - недоразвитыми. Яркая иллюстрация к теме импринтинга генов (Dawson W. 1965. Fertility and size inheritance in a Peromyscus species cross. Evolution 19: 44–55; Mestel R. 1998. The genetic battle of the sexes. Natural History 107: 44–49 ).

Никакая теория не обходится без изъянов. Данная теория слишком проста, чтобы быть правдоподобной. В частности, исходя из этой теории, можно предположить, что изменения в диверсифицированных генах должны происходить довольно часто, поскольку временный успех одного из генов в паре генов-антагонистов стимулирует развитие другого гена. Но сравнение диверсифицированных генов у разных видов не подтвердило эту догадку. Напротив, оказалось, что такие гены довольно консервативны. Всё больше становится ясно, что теория Хэйга объясняет лишь некоторые случаи импринтинга (Hurst L. D., McVean G. T. 1997. Growth effects of uniparental disomies and the conflict theory of genomic imprinting. Trends in Genetics 13: 436–443; Hurst L. D. 1997. Evolutionary theories of genomic imprinting. In: Reik W., Surani A. (eds), Genomic imprinting, p. 211–237. Oxford University Press, Oxford ).

Импринтинг генов ведет к удивительным последствиям. У мужчин материнская копия хромосомы 15 содержит в себе знак того, что она пришла от матери. Но уже в следующем поколении у дочери или сына эта же хромосома будет содержать знак отцовского происхождения. В какой-то момент должно произойти переключение знака хромосомы на противоположный. Нет сомнений в том, что такое переключение происходит, поскольку только этим можно объяснить синдром Ангельмана. Никаких видимых повреждений на хромосоме 15 нет, просто две хромосомы ведут себя так, как будто обе произошли от отца. Это объясняется тем, что в нужный момент в организме матери не произошло переключение знака хромосомы. Возникновение данной проблемы можно проследить в поколениях и обнаружить мутацию в небольшом участке ДНК, непосредственно примыкающем к диверсифицированным генам. Это так называемый центр импринтинга, который каким-то образом указывает на происхождение хромосомы. Импринтинг генов осуществляется с помощью метилирования - биохимического процесса, о котором мы уже говорили при рассмотрении хромосомы 8 (Horsthemke B. 1997. Imprinting in the Prader–Willi / Angelman syndrome region on human chromosome 15. In: Reik W., Surani A. (eds), Genomic imprinting, p. 177–190. Oxford University Press, Oxford ).

Как вы помните, метилирование «буквы» C осуществляется клеткой для того, чтобы отключить ненужные гены и взять под домашний арест эгоистичные самокопирующиеся участки ДНК. Но на ранних этапах развития эмбриона при образовании так называемых бластоцитов происходит деметилирование хромосом. Гены затем вновь метилируются на следующем этапе развития эмбриона - гаструляции. Однако деметилирование происходит не полностью. Диверсифицированным генам как-то удается ускользнуть от данного процесса, при этом активизируется либо только материнский ген, либо только отцовский, тогда как другой парный ген остается метилированным (неактивным). Существует много версий того, как это всё происходит, но пока нет ни одного экспериментально подтвержденного варианта (Reik W., Constancia M. 1997. Making sense or antisense? Nature 389: 669–671 ).

Именно неполное деметилирование диверсифицированных генов делает такой сложной задачей клонирование млекопитающих. Например, жаб можно очень просто клонировать, взяв ядро из любой клетки тела и поместив его в яйцеклетку. Но такую процедуру не удается выполнить с клетками млекопитающих, поскольку в любой клетке как женского, так и мужского организма какая-то часть генов, важных для развития эмбриона, обязательно отключена в результате метилирования. Поэтому вскоре после открытия явления импринтинга генов было заявлено, что клонирование организма млекопитающих в принципе невозможно. В клонированном эмбрионе диверсифицированные гены будут либо включены, либо выключены на обеих хромосомах, что приведет к дисбалансу в развитии эмбриона. «Таким образом, - делает вывод ученый, открывший импринтинг генов, - успешное клонирование млекопитающих с помощью ядер соматических клеток представляется невозможным» (McGrath J., Solter D. 1984. Completion of mouse embryogenesis requires both the maternal and paternal genomes. Cell 37: 179–183; Barton S. C., Surami M. A. H., Norris M. L. 1984. Role of paternal and maternal genomes in mouse development. Nature 311: 374–376 ).

Тем не менее совершенно неожиданно в 1997 году в Шотландии появилась клонированная овца Долли. До сих пор создателям Долли и других клонов, вскоре последовавших за ним, не совсем ясно, как удалось обойти проблему импринтинга. Похоже, что процедуры, которым подвергалась соматическая клетка перед клонированием, стерли всю информацию о происхождении хромосом (Jaenisch R. 1997. DNA methylation and imprinting: why bother? Trends in Genetics 13: 323–329 ).

Диверсифицированный участок хромосомы 15 содержит около восьми генов. Ген, отсутствие которого ведет к развитию синдрома Ангельмана, называется UBE3A. Непосредственно за ним следуют два других гена, которые считают основными кандидатами на роль генов, вызывающих синдром Прадера–Вилли. Эти гены называются SNRPN и IPW . До конца их роль не установлена, но можно предположить, что виною всему является поломка в гене SNRPN .

В отличие от других генетических заболеваний данные синдромы вызваны не мутациями в соответствующих генах, а другими причинами. При формировании яйцеклетки в яичниках обычно ей достается одна пара хромосом. В редких случаях происходит сбой во время разделения хромосом, и в одной яйцеклетке оказываются две парные хромосомы. После оплодотворения такой яйцеклетки в ней уже оказывается три пары хромосом: две от матери и одна от отца. Обычно такое случается при позднем материнстве и заканчивается, как правило, гибелью эмбриона. Только в том случае, если в яйцеклетке оказывается три хромосомы 21, которая является самой маленькой хромосомой человека, эмбриону удается выжить. При этом рождается ребенок с синдромом Дауна. Во всех остальных случаях наличие лишней хромосомы ведет к такой диспропорции биохимических реакций в клетках, что развитие эмбриона становится невозможным.

Яйцеклетка не столь беззащитна перед превратностями судьбы. В короткий период от оплодотворения до начала развития эмбриона она может освободиться от лишней хромосомы. В результате в клетке остается, как и положено, две парные хромосомы. Но в механизме удаления лишней хромосомы не учитывается ее происхождение, поэтому удаление происходит случайным образом. Хотя случайное удаление гарантирует, что в 66% случаев клетка избавится от одной из материнских хромосом, изредка удаляется отцовская хромосома, и развитие эмбриона продолжается с двумя материнскими хромосомами. Опять-таки, как правило, это не имеет большого значения, но не в случае с хромосомой 15. Если в яйцеклетке оказались две материнские хромосомы 15, то сразу два гена UBE3A , вместо одного, включаются в работу, но не работает ни один ген SNRPN . И как результат - синдром Прадера–Вилли (Cassidy S. B. 1995. Uniparental disomy and genomic imprinting as cause of human genetic disease. Environmental and Molecular Mutagenesis 26: 13–20; Kishino T., Wagstaff J. 1998. Genomic organisation of the UBE3A/E6-AP gene and related pseudogenes. Genomics 47: 101–107 ).

На первый взгляд ген UBE3A не кажется таким уж важным. Его продуктом является E3 убихинон лигаза - белковый клерк среднего уровня с не вполне ясной функцией, которая работает в некоторых тканях кожи и в лимфатических клетках. Позже, в 1997 году, сразу три группы ученых обнаружили, что этот ген включается также в тканях мозга как у мышей, так и у человека. Вот это важное открытие! Оба синдрома, Прадера–Вилли и Ангельмана, указывают на определенные органические повреждения мозга больных. Более того, оказалось, что и многие другие диверсифицированные гены работают в мозгу. При исследовании мозга мыши были получены данные о том, что лобные доли развиваются в большей степени под контролем генов матери, тогда как за гипоталамус несут ответственность отцовские гены (Jiang Y. et al. 1998. Imprinting in Angelman and Prader–Willi syndromes. Current Opinion in Genetics and development 8: 334–342 ).

Дисбаланс был обнаружен с помощью одного тонкого метода, состоящего в создании «химерных» организмов. Химерами в генетике называют организмы, полученные в результате слияния клеток двух генетически неоднородных организмов. Такое случается в природе, в том числе у людей. Человек никогда не догадается, что он является «химерой», если не произвести детальный генетический анализ. Просто два эмбриона на самых ранних стадиях развития объединяются и продолжают развитие как один организм. Можно рассматривать данный феномен как явление, обратное появлению однояйцовых близнецов. Вместо двух организмов с одинаковым геномом, получается один организм, клетки которого содержат хромосомы двух разных геномов.

В лабораторных условиях довольно просто получить химерную мышь. Нужно лишь слегка спрессовать клетки зародышей на ранней стадии развития. Но исследователи из Кембриджа кое-что добавили в данный эксперимент: они объединили нормальный эмбрион мыши с эмбрионом, полученным из яйцеклетки с двумя парами материнских хромосом (в яйцеклетке объединили проядрышки из этой и другой яйцеклетки). В результате получился мышонок с невероятно большой головой. В другом эксперименте второй зародыш получали путем слияния двух проядрышек сперматозоидов, т. е. второй эмбрион содержал только отцовские хромосомы. В этот раз химерный мышонок получался с большим телом, но маленькой головой. Кроме того, клетки с материнскими хромосомами были предварительно обработаны особым образом, в результате чего ученые смогли определить их распределение в эмбрионе. Оказалось, что стриатум, кора головного мозга и гиппокамп у экспериментальной мыши состояли в основном из клеток, управляемых материнскими хромосомами, тогда как такие клетки почти отсутствовали в гипоталамусе. В коре головного мозга происходит обработка сигналов из окружающего мира и формируются поведенческие реакции. Отцовские хромосомы оказались слабо представленными в головном мозге, но их значительно больше в мышечной ткани. Что касается головного мозга, то они оказывают существенное влияние на гипоталамус, гипофиз и предзрительное поле.

Эти области мозга лежат в основе «лимбической системы», ответственной за управление эмоциями. Роберт Триверс (Robert Trivers) в шутку сказал, что кора головного мозга берет на себя заботу по общению с родственниками с материнской стороны, тогда как гипоталамус выступает совершенно эгоистичным органом (Allen N. D. 1995. Distribution of pathenogenetic cells in the mouse brain and their influence on brain development and behaviour. Proceedings of the National Academy of Sciences of the USA 92: 10782–10786; Trivers R., Burt A. 1999. Kinship and genomic imprinting. Results and problems in cell differentiation 25: 1–21 ).

Таким образом, если мы рассматривали плаценту как орган, который мужские гены не доверяют женским генам, то женские гены не доверяют мужским генам управление развитием мозга. Если с нашим развитием дела обстоят так же, как у мышей, то мы с вами живем с материнскими мыслями и отцовским характером (это верно лишь в той степени, в какой мысли и характер передаются по наследству). В 1998 году у мышей был обнаружен еще один ген с половым импринтингом, который оказывает существенное влияние на материнское поведение самок мышей. Самки с работающим геном Mest ведут себя как примерные матери. Если этот ген не работает, то внешне самка мыши ничем не отличается от своих подруг, пока дело не доходит до появления мышат.

Матери из таких самок получаются ужасные. Они не доводят до конца создание гнезда, они не возвращают в гнездо заблудившихся мышат, не следят за их чистотой и вообще мало уделяют им внимания. Мышата у таких самок обычно погибают. Неизвестно, по какой логике, но этот ген наследуется по отцовской линии. В организме работает только та версия гена, которая находится на отцовской хромосоме, тогда как материнская версия гена блокирована (Vines G. 1997. Where did you get your brains? New Scientist , 3 May: 34–39; Lefebvre L. et al. 1998. Abnormal maternal behaviour and growth retardation associated with loss of the imprinted gene Mest. Nature Genetics 20: 163–169 ).

С позиций теории Хэйга о генетическом конфликте на этапе развития эмбрионов этот факт трудно объяснить. Интересную теорию для объяснения данного феномена предложил японский ученый Йох Иваса (Yoh Iwasa). Он предположил, что поскольку пол эмбриона устанавливается отцовской хромосомой (либо хромосомой X, либо хромосомой Y), то именно мужская хромосома X должна работать в женском организме, т. е. особенности женского поведения должны задаваться генами хромосом со стороны отца. Если будет работать еще и женская хромосома X, то эффект феминизации будет проявляться и у сыновей, а у дочерей - с удвоенной силой. Отсюда логично заключить, что поведенческий половой диморфизм должен контролироваться мужскими генами (Pagel M. 1999. Mother and father in surprise genetic agreement. Nature 397: 19–20 ).

Лучшим подтверждением этой идеи явился естественный эксперимент, изученный и описанный Дэвидом Скьюзом (David Skuse) с коллегами из Института здоровья ребенка (the Institute of Child Health) в Лондоне. Скьюз наблюдал восемь девушек и девочек в возрасте от 6 до 25 лет с синдромом Тёрнера - генетическим заболеванием, вызванным отсутствием части хромосомы X. У мужчин только одна хромосома X, но у женщин их две, хотя во всех клетках организма работает только одна из хромосом X, тогда как другая инактивируется. По идее отсутствие части хромосомы X у женщин не должно вести к большим проблемам. Действительно, женщины с синдромом Тёрнера выглядят развитыми как физически, так и умственно, но у них часто возникают проблемы с адаптацией в обществе.

Скьюз с коллегами решают изучить поведение большего числа пациентов с данным синдромом и проследить отличия между теми, кто унаследовал дефектную хромосому от отца, и теми, кто унаследовал ее от матери. Двадцать пять девочек с дефектом в материнской хромосоме X легче вливались в коллектив и проявляли «высокую коммуникабельность и хорошие практические навыки, благодаря чему налаживались отношения с коллективом», что отличало их от девочек с дефектом в отцовской хромосоме X. Скьюз с коллегами установили это с помощью стандартных тестов на способность к обучению, а также с помощью вопросников для родителей, в которых предлагалось оценить: насколько ребенок заботлив по отношению к другим людям; чувствует ли он, когда кто-то расстроен или разозлен; учитывает ли он в своих поступках замечания взрослых; насколько капризен ребенок и может ли он обходиться без внимания взрослых; насколько легко его успокоить, когда он расстроен; часто ли он неосознанно обижает других людей; слушается ли он родителей и т. п. Родителям предлагалось выставить своей дочери по каждому вопросу оценку по трехбалльной системе, после чего подсчитывался общий результат. Все девочки с синдромом Тёрнера оказались более сложными детьми, чем обычные девочки и мальчики их возраста, но оценки были почти вдвое хуже у детей с дефектом в отцовской хромосоме X, чем у детей, унаследовавших дефектную хромосому от матери.

Ученые пришли к выводу о том, что где-то на хромосоме X есть ген или гены с половым импринтингом, в результате чего эти гены работают только на отцовской хромосоме и всегда выключены на материнской. Эти гены оказывают какое-то влияние на социальное развитие ребенка, в частности, на его способность правильно оценивать чувства других людей (Skuse D. H. et al. 1997. Evidence from Turner"s syndrome of an imprinted locus affecting cognitive function. Nature 397: 19–20 ).

Теперь становится ясно, почему аутизм, дислексия и другие проблемы с речью чаще возникают у мальчиков, чем у девочек. У мальчиков только одна хромосома X, унаследованная от матери. Необходимые гены на ней могут быть не только повреждены, но и выключены в результате импринтинга. К моменту написания этой книги такие гены еще не были обнаружены, хотя факты импринтинга других генов хромосомы X известны.

Действительно, на хромосоме X в последние годы было найдено несколько генов, мутации в которых ведут к дислексии и (или) к эпилепсии, но пока нет данных об импринтинге этих генов (De Covel C. G. et al. 2004. Genomewide scan identifies susceptibility locus for dyslexia on Xq27 in an extended Dutch family. Journal of medical genetics 41: 652–657; Lu J., Sheen V. 2005. Periventricular heterotopia. Epilepsy & behavior 7: 143–149 ).

Еще более важный результат состоит в разрешении давнего спора, продолжающегося на протяжении всего XX века: что определяет поведенческий половой диморфизм - природа или социальные условия? Одни ученые пытались всё свести к наследственности, отрицая роль обучения и социальных традиций; другие видели во всём влияние социума и отрицали какое-либо наследование поведения. Впрочем, роль обучения и влияния общества никто никогда не отрицал. Споры велись в основном вокруг того, имеет ли наследственность хоть какое-то влияние на поведение мужчины и женщины. Я как раз писал эту главу, когда моя годовалая дочка обнаружила маленькую пластмассовую куклу и вскрикнула от восхищения. Ее старший брат когда-то давно издал такой же крик, когда обнаружил игрушечный трактор. Как и многим родителям, мне не верится, что такое различие в предпочтении игрушек вызывается скрытым влиянием общества на годовалого ребенка. Мальчики и девочки по природе своей имеют разные склонности и интересы. Мальчики больше склонны к соперничеству, проявляют интерес к машинам, оружию и к активным действиям. Девочек больше интересуют окружающие люди, наряды и общение. Не только социальный уклад ведет к тому, что мужчины предпочитают карты, а женщины - романы.

Как подтверждение сказанного выше можно привести один прискорбный случай, произошедший в 1960 году в США. В результате неумело проведенного обрезания у новорожденного мальчика был серьезно поврежден пенис. Доктора решили ампутировать его и, чтобы избежать страданий юноши, провели операцию по смене пола ребенка, превратив его в девочку с помощью хирургического вмешательства и гормональной терапии. Джон стал Джоан и рос (или росла) с куклами и платьицами. Девочка выросла и превратилась в молодую женщину. В 1973 году психолог-фрейдист Джон Моне (John Money) опубликовал свое заключение о том, что Джоан стала нормально развитой девушкой, что еще раз доказывает несостоятельность теорий о генетической предопределенности роли мужчины и женщины в обществе.

До 1997 года никто не удосужился проверить этот факт. Когда Милтон Даймонд (Milton Diamond) и Кейт Зигмундсон (Keith Sigmundson) попытались отыскать Джоан, они нашли мужчину, счастливого в браке со своей женой. Его история отличалась от той, которую рассказал Моне. Ребенок постоянно чувствовал дискомфорт и желание носить брюки, играть с мальчишками и ходить по-маленькому стоя. Когда ему было 14 лет, родители рассказали о произошедшем несчастье, что мальчик воспринял с чувством облегчения. Он прекратил принимать гормоны, изменил свое имя, снова став Джоном, начал одеваться и вести себя как мужчина, согласился на операцию по удалению груди. В 25 лет он женился на женщине и усыновил ее ребенка. Таким образом, этот случай стал ярким примером наследования поведения мужчины и женщины даже вопреки целенаправленному влиянию общества. Наблюдения над животными также свидетельствуют о наследственной основе поведенческих реакций самцов и самок. Мозг - это орган с врожденной половой принадлежностью. Теперь это утверждение подкреплено данными генетиков, обнаруживших гены половых предпочтений и гены с половым импринтингом (Diamond M., Sigmundson H. K. 1997. Sex assignment at birth: long-term review and clinical implications. Archives of Pediatric and Adolescent Medicine 151: 298–304 ).

В ходе расшифровки генома человека описаны характеристики хромосом:

Хромосома 1 – Самая большая хромосома.на ее долю приходится почти 10% генома человека. Число генов – около 3000. Более 160 генов связаны с разнообразными заболеваниями: болезнь Альцгеймера, болезнь Гоше, рак протоков молочной железы, кардиомиопатия, катаракта, эктодермальная дисплозия, гипотироидизм, острая лимфобластная лейкемия, нейробластома, рак простаты, атеросклероз.

Хромосома 2 – в ней содержится меньше генов, чем в первой хромосоме. Тем не менее, число заболеваний, связанных с мутациями в генах этой хромосомы, достаточно большое: цистинурия, диабет, рак прямой кишки, фиброматозис, гипотироидизм, ожирение, болезнь Паркинсона, тромбофилия, дистрофия большеберцовой мышцы, аутосомная рецессивная глухота – 9, дистрофия мышц конечностей 2b.

Хромосома 3 – гены, содержащиеся в ней, связаны более с чем 90 различными заболеваниями: кардиомиопатия, рак прямой кишки, коллоректальный рак, гемолитическая анемия, гипокальцемия, миелоидный лейкоз, В-клеточная лимфома, миотоническая дистония, карцинома почки, шизофрения.

Хромосома 4 – общее число генов ниже среднего. С этой хромосомой ассоциируют заболевания: болезнь Паркинсона, фенилкетонурия, гипохондроплозия, острый иммунный дефицит, склонность к алкоголизму.

Хромосома 5 – с генами этой хромосомы связан ряд тяжелых заболеваний: мегалопластическая анемия, колоректальный рак, капиллярная гемангиома, дистрофия роговицы, аутосомная доминантная глухота, острая лейкемия, острая дистрофия, астма и др.

Хрмосома 6 – диабет, спиноцеребральная атрофия, гемолитическая анемия, лейкемия, тромбофилия, болезнь Паркинсона, чувствительность к туберкулезу.

Хромосома 7 – хронический грануломотоз, рак прямой кишки, кистозный фиброз, вялая кожа, гемолитическая анемия, карликовость, врожденная миотония, панкреатит, трипсиногеновая недостаточность, болзень коронарной артерии.

Хромосома 8 – число генов относительно небольшое, мутации в них приводят, к таким заболеваниям, как: хондросаркома, эпилепсия, гипотироидизм, восприимчивость к атеросклерозу, синдром Вернера, сфероцитоз и др.

Хромосома 9 – альбинизм, галактезимия, меланома, порфирия, стоматоцитоз, дистония, карцинома базальных клеток.

Хромосома 10 – кардиомиопатия, почечная гиперплозия, катаракта, лейкемия, глиобластома, эндокринная неоплозия, аденокарцинома простаты, шизэнцефалия.

Хромосома 11 – альбинизм, рак груди, рак мочевого пузыря, рак простаты, глухота, эритремия, острый комбинированный иммунодефицит, мужское бесплодие, множественная миелома, талассемия, серповидноклеточная анемия, остеопороз, и др. Общее число заболеваний достаточно велико.

Хромосома 12 – гены распределены в ней неравномерно,. Заболевания: эмфизема, энурез, задержка роста, кератодерма, липома, наследственная миопатия, фенилкетонурия, синдром слюнных желез и др.

Хромосома 13 –гены секвенированы недостаточно, относительно других хромосом обеднена генами. Выявлены: рак мочевого пузыря, глухоты, недостаточность факторов свертываемости крови, мышечная дистрофия, рак поджелудочной железы, болезнь Вилсона и др.

Хромосма 14 – Содержатся гены, важные для работы иммунной системы, с мутациями в генах этой хромосомы связан ряд тяжелых заболеваний: ранняя форма болезни Альцгеймера, кардиомиопатия, сфероцитоз, фенилкетонурия, температурочувствительный апоптоз и др.

Хромосома 15 – секвенирована неполностью. Выявлен большой спектр заболеваний: альбинизм, синдром Барттера, синдром Блюма, гипомеланоз, гинекомастия, лейкемия, мышечная дистрофия, эпилепсия, шизофрения и др.

Хромосома 16 – рак желудка, эритроцитоз, миелоидная лейкемия, тирозиемия, поликистозная болезнь почек, карцинома яичника, тирозиемия, мукополисахаридоз, болезнь рыбьих глаз.

Хромосома 17 – высокое содержание генов: спорадический рак груди, рак прямой кишки, диабет, гемолитическая анемия, рак языка, миостенический синдром, острая лейкемия, мышечная дистрофия, нейробластому, рак яичника, буллезный эпидермолиз.

Хромосома 18 – общее число генов, мутации которых связанны с патологиями, невелико: амилоидоз, рак прямой кишки, рак поджелудочной железы, лимфома, буллезный эпидермолиз и др.

Хромосома 19 – наиболее богата ГЦ-парами нуклеотидов, имеются последовательности, гомологичные последовательностям на 16 других хромосомах человека. С этой мутациями в этой хромосоме связывают патологии: рак прямой кишки, миотоническая дистрофия, атеросклероз коронарной артерии, гипертрофическая кардиомиопатия, миотоническая дистрофия, лимфобластная лейкемия, сахарный идиопатический диабет и др.

Хромосома 20 – по размеру составляет всего около 2% от генома человека. Гены этой хромосомы несут информацию о ряде заболеваний, начиная от ожирения и экземы и заканчивая слабоумием и катарактой. С мутациями в генах 20 хромосомы связаны: болезни сердца, тяжелые нарушения иммунной системы, астма, скелетная дисплазия, диабет и многие другие

Хромосома 21 – самая маленькая по размерам и информационной ёмкости хромосома (в ней обнаружено всего 200 генов). В ней есть участок из 7млн пар нуклеотидов (это больше всего генома бактерии E.Coli) содержащий только один ген. При наличии трех копий этой хромосомы возникает болезнь Дауна. Мутации в этой хромосоме способны вызвать синдром Ушера, голопроэзенцефалию и некоторые формы злокачественных опухолей.

Хромосома 22 – наиболее полно описана (нерасшифровано окло 3%), секвенирована первой (1999год). Она содержит 500генов. Для этой хромосомы установлены функции примерно половины генов, около 160 генов показывают значительную гомологию с генами мыши. Несмотря на свои небольшие размеры и малое число генов, ее патология установлена при некоторых генетических и онкологических заболеваниях. Сейчас известно 27 заболеваний, вызванных нарушениями в 22 хромосоме. Нарушения генов в этой хромосоме вызывают: рак, предрасположенность к шизофрении, болезни Паркинсона, серьезным аномалиям сердца и нервной системы. При лейкозах и лимфомах выялены трисомии и моносомии, обмен участками (транслокации) различных хромосом. Самый известный пример – филадельфийская хромосома, образованная в результате транслокации между хромосомами 9 и 22. Трисомия (3 копии вместо 2) вызывает синдром кошачьего глаза (колобома наружной оболочки), атрезию ануса, некоторые пороки развития и умственную отсталость. Трисомия – вторая по значению причина выкидышей у беременных.

Хромосома Х – женская половая хромосома,наличие двух Х хромосом определяет женский пол, ХY- мужской пол. Генов в хромосоме Х немного,с ними связаны следующие заболевания: рак груди, рак простаты, кардиомиопатия, эпилепсия, гемофилия В, ихтиоз,синдром Барта,мукополисахароидоз 2.

Y Хромосома – мужская половая хромосома, в ней содержится совсем немного генов, меньше 100. Скорости мутации в этой хромосоме в 4 раза выше, чем в хромосоме Х. В ней содержится большое число палимдромов. Основная роль тех генов, которые имеются, заключается в контролировании дифференцировки пола, формировании яичек и процессы сперматогенеза.В частности, основной ген «самцовости» вызваны SRY,кодирует белок, который включает в работу многие гены других хромосом и тем самым вызывает каскад биохимических реакций (конечный результат- образование яичек).На сегодняшний день это самый консервативный ген внутри вида.Отмечаны случаи, когда в клетках имеется не одна,а две и даже три копии хромосомы Y.При этой патологии проявляется асоциальное поведение и различные психологические нарушения у 35% больных. Совсем немного генов ассоциировано с болезнями человека. Основные из них - гонадный дисгенез и синдром клеток Сертоли

25 Хромосома (митохондриальный геном) – мит-ДНК называют иногда хромосомой 25 или М хромосомой. Эта ДНК была секвенирована еще в 1981 году. В клетке человека насчитывается от 100 до 1000 митохондрий в каждой из которых содержиться от 2 до 10 молекул кольцевой мит-ДНК.Характеризуется очень компактным расположением генов, как и в геноме бактерий, в ней так же имеются некоторые отличия от ядерной ДНК. митДНК отвественная за синтез всего лишь нескольких, но очень важных белков. Замечено, что в ДНК митохондрии более ранимо, чем геном ДНК. Обнаружена связь между мутациями в митДНК с возникновением рака (рак груди, лимфома), а также с некоторыми тяжелыми наследственными заболеваниями.

Одним из важных итогов изучения генома человека является появление и быстрое развитие молекулярной медицины, основу которой составляет генетическая уникальность каждого человека.

Организм человека - это сложная многоплановая система, которая функционирует на различных уровнях. Для того, чтобы органы и клетки могли работать в правильном режиме, в конкретных биохимических процессах должны участвовать определённые вещества. Для этого необходимо прочное основание, то есть корректная передача генетического кода. Именно заложенный наследственный материал управляет развитием зародыша.

Однако в наследственной информации иногда возникают изменения, которые появляются в крупных объединениях или же касаются отдельных генов. Подобные ошибки называют мутациями генов. В отдельных случаях такая проблема относится к структурным единицам клетки, то есть к целым хромосомам. Соответственно, в этом случае ошибку называют мутацией хромосом.

Каждая человеческая клетка в норме содержит одинаковое количество хромосом. Они объединены одинаковыми генами. Полный набор составляет 23 пары хромосом, но в половых клетках их в 2 раза меньше. Это объясняется тем, что при оплодотворении слияние сперматозоида и яйцеклетки должно представлять полноценную комбинацию всех необходимых генов. Их распределение происходит не рандомно, а в строго определённом порядке, причём такая линейная последовательность абсолютно одинакова для всех людей.

Спустя 3 года французским учёным Ж. Леженом было обнаружено, что нарушение у людей умственного развития и устойчивость к инфекциям напрямую связаны с Речь шла о лишней 21 хромосоме. Она одна из самых маленьких, но в ней сосредоточено генов. Лишняя хромосома наблюдалась у 1 из 1000 новорождённых. Эта хромосомная болезнь на сегодняшний день является наиболее изученной и называется синдромом Дауна.

В том же 1959 году было изучено и доказано, что наличие у мужчин лишней Х-хромосомы приводит к болезни Кляйнфельтера, при которой человек страдает умственной отсталостью и бесплодием.

Однако, несмотря на то что хромосомные аномалии наблюдаются и изучаются довольно давно, даже современная медицина не способна лечить генетические болезни. Но довольно модернизированы методы диагностики таких мутаций.

Причины возникновения лишней хромосомы

Аномалия является единственной причиной для возникновения 47 хромосом вместо положенных 46. Специалистами в области медицины было доказано, что главная причина возникновения лишней хромосомы - возраст будущей мамы. Чем старше беременная, тем больше вероятность нерасхождения хромосом. Только по этой причине женщинам рекомендуется рожать до 35 лет. В случае возникновения беременности после наступления этого возраста следует пройти обследование.

К факторам, которые способствуют появлению лишней хромосомы, относят уровень аномалии, возросший в целом в мире, степень экологического загрязнения и многое другое.

Существует мнение, что лишняя хромосома возникает, если были в роду аналогичные случаи. Это всего лишь миф: исследования показали, что родители, чьи дети страдают от хромосомного заболевания, имеют совершенно здоровый кариотип.

Диагностика появления ребёнка с хромосомной аномалией

Распознавание нарушения числа хромосом, так называемый скрининг анеуплоидии, выявляет у эмбриона недостаток или переизбыток хромосом. Беременным женщинам старше 35 лет рекомендуется пройти процедуру получения образца околоплодных вод. Если будет обнаружено нарушение кариотипа, то будущей маме будет необходимо прервать беременность, так как родившийся ребёнок всё жизнь будет страдать тяжелым заболеванием при отсутствии эффективных методов лечения.

Нарушение хромосом в основном имеет материнское происхождение, поэтому следует проводить анализ не только клеток эмбриона, но и веществ, которые образуются в процессе созревания. Такую процедуру называют диагностикой генетических нарушений по полярным тельцам.

Синдром Дауна

Учёным, впервые описавшим монголизм, является Даун. Лишняя хромосома, болезнь генов при наличии которой обязательно развивается, широко изучена. При монголизме возникает трисомия по 21 хромосоме. То есть у больного человека вместо положенных 46 получается 47 хромосом. Основной признак - отставание в развитии.

Дети, у которых наблюдается наличие лишней хромосомы, испытывают серьёзные трудности усвоения материала в школьном учреждении, поэтому им необходима альтернативная методика обучения. Помимо умственного, наблюдается отклонение и в физическом развитии, а именно: раскосые глаза, плоское лицо, широкие губы, плоский язык, укороченные или расширенные конечности и стопы, большое скопление кожи в области шеи. Продолжительность жизни в среднем достигает 50 лет.

Синдром Патау

К трисомии также относится синдром Патау, при котором наблюдается 3 копии 13 хромосомы. Отличительным признаком является нарушение деятельности ЦНС или её неразвитость. У больных наблюдаются множественные пороки развития, возможны в том числе сердца. Больше 90 % людей с синдромом Патау умирают в первый год жизни.

Синдром Эдвардса

Эта аномалия, как и предыдущие, относится к трисомии. В данном случае речь идёт о 18 хромосоме. характеризуется различными нарушениями. В основном у больных наблюдается костная деформация, изменённая форма черепа, проблемы с органами дыхания и сердечно-сосудистой системой. Продолжительность жизни обычно около 3 месяцев, но некоторые младенцы доживают до года.

Эндокринные болезни при аномалии хромосом

Помимо перечисленных синдромов хромосомной анормальности, существуют и другие, при которых также наблюдается численная и структурная аномалия. К таким болезням относятся следующие:

  1. Триплоидия - довольно редкое расстройство хромосом, при котором их модальное число равно 69. Беременность обычно заканчивается ранним выкидышем, но при выживании ребёнок живёт не более 5 месяцев, наблюдаются многочисленные врождённые дефекты.
  2. Синдром Вольфа-Хиршхорна - также одна из редчайших хромосомных аномалий, которая развивается благодаря делеции дистального конца короткого плеча хромосомы. Критической областью этого расстройства является 16,3 на хромосоме 4р. Характерные признаки - проблемы в развитии, задержки в росте, судороги и типичные черты лица
  3. Синдром Прадера-Вилли - заболевание встречается очень редко. При такой аномальности хромосом 7 генов или их некоторые части на 15 отцовской хромосоме не функционируют или вовсе удалены. Признаки: сколиоз, косоглазие, задержка физического и интеллектуального развития, быстрая утомляемость.

Как воспитывать ребёнка с хромосомным заболеванием?

Воспитывать ребёнка с врождёнными хромосомными заболеваниями оказывается непросто. Для того чтобы облегчить свою жизнь, необходимо придерживаться некоторых правил. Во-первых, сразу следует преодолеть отчаяние и страх. Во-вторых, не нужно тратить время на поиске виновного, его просто нет. В-третьих, важно определиться с тем, какая помощь требуется ребёнку и семье, после чего обращаться к специалистам за медицинской и психолого-педагогической помощью.

В первый год жизни диагностика крайне важна, так как в этот период развивается двигательная функция. С помощью профессионалов ребёнок быстрее приобретёт моторные способности. Необходимо объективно обследовать малыша на патологию зрения и слуха. Также ребёнок должен наблюдаться у педиатра, психоневролога и эндокринолога.

Носитель лишней хромосомы обычно дружелюбен, что облегчает его воспитание, также он по мере своих сил старается заслужить одобрение взрослого. Уровень развития особенного малыша будет зависеть от того, насколько упорно будут его обучать основным навыкам. Больные дети хоть и отстают от остальных, но требуют к себе много внимания. Всегда необходимо поощрять самостоятельность ребёнка. Прививать навыки самообслуживания следует на собственном примере, и тогда результат не заставит себя долго ждать.

Дети с хромосомными заболеваниями наделены особыми талантами, который необходимо раскрыть. Это могут быть занятия музыкой или рисование. Важно развиваться речь малыша, играть в активные и развивающие моторику игры, читать, а также приучать к режиму и аккуратности. Если проявить к ребёнку всю свою нежность, заботу, внимательность и ласку, он ответит тем же.

Можно ли вылечить?

На сегодняшний день излечить хромосомные болезни невозможно; каждый предлагаемый метод является экспериментальным, а их клиническая эффективность не доказана. Добиться успехов в развитии, социализации и приобретении навыков помогает систематическая медицинская и педагогическая помощь.

Больной ребёнок должен всё время наблюдаться у специалистов, так как медицина вышла на тот уровень, при котором способна предоставить необходимое оборудование и различные виды терапии. Педагоги же применят современные подходы в обучении и реабилитации малыша.

Джеймс Уотсон, сооткрыватель двойной спирали ДНК, в своей последней книге, вернее даже в ходе одного из интервью, данного при ее презентации, довольно неожиданно заявил, отринув всякую политкорректность, что у представителей африканской расы гены ума другие, нежели у белых. Он конечно же имел в виду молекулярные особенности, которыми характеризуются «интеллектуальные» гены.

Возмущенные критики отринули непонятные им тонкости отличий дээнковых последовательностей и сконцентрировались на «расизме» патриарха изучения генома человека. Но стоило ли уж так поносить почтенного старца, который вовсе не страдает старческим маразмом. Ведь в другом разделе интервью он с гордостью заявил, что в его жилах течет и малая толика негритянской крови. А у кого в США ее нет! Это точно так же как у Карамзина, говорившего про себя, что поскреби каждого русского и тут же обнаружишь татарина┘ Возможно, надо было бы глубже вникнуть в причины генетических отличий. Тем более что современные методы исследования генетического материала поставляют в избытке информацию к размышлению. Существует и специальный научный термин для описания указанных Уотсоном различий – ретардантность.

Ретардантность – это отставание в умственном развитии ребенка, которое может возникать по тысяче причин. В последние несколько лет выделено несколько генов, мутации которых приводят к тем или иным нарушениям в развитии мозга. Есть ген, нарушения в котором приводят к микрогирии, или измельчению извилин. При мутации в другом гене ребенок рождается с микроцефалией, то есть уменьшенной в размерах головой и соответственно неразвитым мозгом. Есть гены аутизма, а есть ген речи – при нарушениях в его структуре у ребенка не развивается нормальная речь, хотя это никоим образом не сказывается на умственных способностях┘

И вот – новое открытие, сообщение о котором опубликовано в февральском номере журнала Nature Genetics. Международная группа ученых под руководством Эвана Эйклера из Университета им. Вашингтона проанализировала образцы ДНК у более чем двух тысяч пациентов из Великобритании и Италии, страдающих умственной отсталостью, судорожными припадками и некоторыми другими неврологическими расстройствами. Внимание ученых было привлечено прежде всего к определенному участку 15-й хромосомы человека, в которой у нескольких пациентов обнаружились гигантские нехватки (делеции) «букв» ген-кода, то есть отсутствовал фрагмент вещества жизни. Эти делеции достигали миллиона нуклеотидов (мегабаз).

У всех из них отмечалось умственное недоразвитие в сочетании с эпилепсией или аномальной мозговой активностью. Эти симптомы сочетались с вывернутыми полными губами и аномалиями в развитии пальцев и кистей рук. Генетические тесты более чем двух тысяч здоровых не выявили никаких аномалий или делеций в этом участке 15-й хромосомы.

Новое открытие подтверждает более ранние выводы ученых, которые давно отмечают наличие «сайта» беспокойства в 15-й хромосоме. Сегменты ДНК могут совершать инверсии – поворачиваться в обратном направлении, что приводит к таким аномалиям, как синдромы Прадера-Вилли и Ангельмана. Новый выделенный сайт содержит шесть генов, мутации одного из которых влечет за собой развитие судорожных расстройств.

Эйклер попытался объяснить механизм возникновения дээнковых мутаций с позиции молекулярной эволюции человека: «Этот участок буквально нашпигован удвоениями последовательностей ДНК, которые накопились за 10–15 миллионов лет эволюции человека как разумного существа. Мы пока не представляем себе причину этого не совсем понятного процесса, однако результатом его служит возникновение участка генома, в котором перестановки-реаранжировки весьма обычны и могут иметь большие последствия».

Новая форма умственной отсталости, в основе развития которой лежат делеции участка ДНК 15-й хромосомы, встречается лишь в трех случаях на тысячу людей с интеллектуальным недоразвитием. Однако Эйклер считает, что это чрезвычайно заниженная оценка. Вполне возможно, что речь идет о 15–20% всего количества случаев умственной отсталости. Это обстоятельство сделает экономически выгодным выявление конкретных молекулярных механизмов поражения нервной ткани и разработки лекарственных средств. Эйклер также предвидит, что понимание причин возникновения «делеционной» умственной отсталости позволит более нацеленно искать механизмы и других ее форм.

Остается найти средства, чтобы провести еще более масштабное исследование как минимум 7500 пациентов, чтобы выявить не только наиболее часто встречающиеся реаранжировки, но и более редкие. Интересно посмотреть состояние этой области 15-й хромосомы и у достаточно большого количества африканцев, являющихся наиболее древней расой с наименьшим количеством исходных мутаций генов. Известно, что предки современного человека мигрировали из Африки и в ходе своего расселения по всему миру накопили гораздо больше, нежели представители «исходных» африканцев, изменений в своих генах.

    Схема строения хромосомы в поздней профазе метафазе митоза. 1 хроматида; 2 центромера; 3 короткое плечо; 4 длинное плечо … Википедия

    I Медицина Медицина система научных знаний и практической деятельности, целями которой являются укрепление и сохранение здоровья, продление жизни людей, предупреждение и лечение болезней человека. Для выполнения этих задач М. изучает строение и… … Медицинская энциклопедия

    Раздел ботаники, занимающийся естественной классификацией растений. Экземпляры со многими сходными признаками объединяют в группы, называемые видами. Тигровые лилии один вид, белые лилии другой и т.п. Похожие друг на друга виды в свою очередь… … Энциклопедия Кольера

    генетическая терапия ex vivo - * генетычная тэрапія ex vivo * gene therapy ex vivo генотерапия на основе изоляции клеток мишеней пациента, их генетической модификации в условиях культивирования и аутологичной трансплантации. Генетическая терапия с использованием зародышевой… … Генетика. Энциклопедический словарь

    Животные, растения и микроорганизмы наиболее распространенные объекты генетических исследований.1 Acetabularia ацетабулярия. Pод одноклеточных зеленых водорослей класса сифоновых, характеризуются гигантским (до 2 мм в диаметре) ядром именно… … Молекулярная биология и генетика. Толковый словарь.

    Полимер - (Polymer) Определение полимера, виды полимеризации, синтетические полимеры Информация об определении полимера, виды полимеризации, синтетические полимеры Содержание Содержание Определение Историческая справка Наука о Полимеризация Виды… … Энциклопедия инвестора

    Особое качественное состояние мира, возможно, необходимая ступень в развитии Вселенной. Естественно научный подход к сущности Ж. сосредоточен на проблеме ее происхождения, ее материальных носителей, на отличии живого от неживого, на эволюции… … Философская энциклопедия